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[X. Plane Stress and Plane Strain in Bipolar Co-ordinates.
By G. B. Jerrery, M.A., D.Sc., Fellow of University College, London.

Communicated by Prof. L. N. G. FiLon, F.R.S.

Received May 15,—Read June 24, 1920.

§ 1. INTRODUCTION.

Thr problem of the equilibrium of an elastic solid under given applied forces is one
of great difficulty and one which has attracted the attention of most of the great
applied Mathematicians since the time of Evrer. Unlike the kindred problems of
hydrodynamics and electrostatics, it seems to be a branch of mathematical physics in
which knowledge comes by the patient accumulation of special solutions rather than
by the establishment of great general propositions. Nevertheless, the many and
varied applications of this subject to practical affairs make it very desirable that these
special solutions should be investigated, not only because of their intrinsic importance
but also for the light which they often throw on the general problem. One of the
most powerful methods of the mathematical physicist in the face of recalcitrant
differential equations is to simplify his problem by reducing it to two dimensions.
This simplification can only imperfectly be reproduced in the Nature of our three-
dimensional world, but, in default of more general methods, it provides an invaluable
weapon. '

It was shown by Arry* that in the two-dimensional case the stresses may be
derived by partial differentiations from a single stress function, and it was shown
latert that, in the absence of body forces, this stress function satisfies the linear
partial differential equation of the fourth order V*x = 0, where V* = V*. V% and V*
is the two-dimensional Laplacian 9%/0x?+ 9*/0y".

It might have been expected that these results would have opened the way for
a theory of two-dimensional elasticity of the same generality as the two-dimensional
potential theory. . This has not, however, been the case. This is due in part to the,
greater analytical difficulties which attend the discussion of the two-dimensional

* ¢ Brit. Assoc. Rep.,” 1862, p. 82.

+ W. J. IBBETSON, ¢ Proc. Lond. Math. Soc.,’ vol. xvii., 1886, p. 296. For a history of this part of the
subject see LovE’s ¢ Elasticity,” 2nd edition, p. 17.
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266 DR. G. B. JEFFERY ON PLANE STRESS AND

solutions of V'y = 0 as compared with V*y = 0. The analogues of many of the
important properties of the simpler equation have yet to be discovered if they exist at
all. Some progress has been made, and in this connection we may mention the work
of J. H. MicurLL* who established a general theory of inversion which, with some
important differences, follows the potential theory fairly closely.

" No doubt the analytical difficulties have been the chief obstacle to progress, but
perhaps the theory has not in recent years received attention which it would have
received but for a certain physical difficulty. A truly two-dimensional elastic system
is not so easy of realisation as might seem to be the case at first sight. If the stresses
are everywhere parallel to the xy plane and independent of z there will in general be
a varying displacement parallel to z. If the displacements are everywhere parallel to
the ay plane and independent of z this can only be secured by the application of

a stress 2z which varies from point to point and is perpendicular to the wy plane. This
difficulty was in a large measure removed by a theorem established by Firox, which
has been called the theorem of generalised plane stress.i It states that if' the average

value of the stress zz be taken throughout the thickness of a plate parallel to the xy
plane, then the ordinary two-dimensional theory will give accurately the average stresses
through the thickness of the plate if the elastic constants of the material are modified.
If A, « denote the true elastic constants, A\ must be replaced by N = 2xu/(A +2u) while
w remains the same as before. This theorem attains an even greater importance when
considered in the light of MicHELL'S theorem,} that if a plate bounded by any
number of bounding curves is in equilibrium under forces in its plane applied over the
boundaries, then, provided the forces applied over each boundary taken separately
are 1n equilibrium, the stresses arve everywhere independent of the elastic constants.

The hypothesis that the average value of 2 vanishes throughout the plate,
while certainly not accurately true in the majority of cases, will probably give
a very close approximation in the case of a thin plate where parallel faces are
unstressed.

In the light of this generalisation it is of considerable importance that the two-
dimensional problem should be worked out more thoroughly. The two-dimensional
solutions of V'y = 0 have been investigated in several systems of curvilinear co-
ordinates. Owing to the special importance of the problem of the rectangular beam
the solutions in Cartesian co-ordinates have naturally received a considerable amount
of attention. MicHELL gave the general form of the stress-function in polar co-
ordinates, thus opening the way for the solution of the problem of a plate bounded by

* «“The Inversion of Plane Stress,” ¢ Proc. Lond. Math. Soc.,” 1901, vol. xxxiv., p. 134. Many of the
results of the present paper can be obtained by an application of MICHELL'S methods, but it has proved
more convenient to proceed on different lines.

T *Roy. Soc. Phil. Trans.,” A, 1903, vol. 201, pp. 63-155.

1 ¢Proc. Lond. Math. Soc.,” vol. xxi., 1900, p. 100.
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PLANE STRAIN IN BIPOLAR CO-ORDINATES. 267

two concentric circles, or an infinite pla,t;, containing a circular hole under any
given tractions applied over its boundaries. In his lectures at University
College, London, in 1912, Prof. FiroN gave the complete solution of this problem
determining the stresses and displacements when the stresses on the boundaries
are expanded in Fourier series, and I am not aware that this solution has ever
been published. An outline of the solution in elliptic co-ordinates is given in Love’s
‘ Elasticity.’*

In this paper the complete solution is given for bipolar co-ordinates, for which the
co-ordinate curves are co-axial circles. This solution enables us to treat the problems
of an infinite plate containing two circular holes, a semi-infinite plate bounded by a
straight edge and containing one circular hole, and a civcular disc with an eccentric
circular hole. : |

In the second Section the equations are expressed in bipolar co-ordinates and
formulse are established for the displacements in terms of the stress-function.

In the third Section the stress-function is obtained in a convenient form and the
terms giving rise to many valued displacements are separated out.

The fourth Section is devoted to the determination of the coefticients in the stress-
function when the tractions over the boundaries are given in Fourier series, and to an
examination of the convergence of the resulting series. From the results established
in this section it appears that the solution is complete, for the stress-function can
always be uniquely determined when the tractions are given, provided that the
applied forces taken as a whole are in equilibrium.

The remaining sections are occupied with the examination of some of the simpler
applications of the theory. Section 5 gives the solution for a circular disc with an
eccentric hole (or a cylinder with eccentric bore) when the two boundaries are under
different hydrostatic pressures. Tt is found that the solution of' this problem can be
expressed in finite terms. An important particular case of this problem is discussed
in Section 6, namely, a semi-infinite plate with a straight, unstressed boundary and a
circular hole under a uniform normal pressure. This will give the stresses near
a rivet hole while the hot plastic rivet is being forced home under pressure.
This solution is interesting from another point of view, for if the ratio of the
radius of the-hole to its distance from the edge is suitably adjusted, the point of
greatest tension will be on the straight edge while the point of greatest stress
difference is on the circular boundary. It thus suggests a crucial test for the
rival theories of rupture,—the greatest tension theory and the greatest stress-
difference theory.

Section 7 deals with a semi-infinite plate with an unstressed circular hole
under tension parallel to its straight edge. The solutions are in the form of infinite
series, but the more important aspects of the problem are illustrated by numerical
tables.

* 2nd edition, p. 259.
212
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268 DR. G. B. JEFFERY ON PLANE STRESS AND

§2. Tar Co-ORDINATES.
Let us take curvilinear co-ordinates defined by the conjugate functions
. r+i(y+a
a+'z,,6’=log———.(i——>, N € )
x+i(y—a)
where «, y are Cartesian co-ordinates and « is a positive real length. Solving for

x, 9, we have .
a sin B _ _asnha ]
o= e e y= ——— . . . . . . (2
cosh a— cos B cosh aa— cos 8

Elements of arc measured along the normals to the curves a, 8 = constant are
respectively dafh, 38/h, where

1 a.\2 du\2
=)+ (&)

from which we have
h = (cosh a—cos B)fa. . . . (3)

The general scheme of co-ordinates is shown

in fig. 1. If O, O, are the points 0, —a and

0, a respectively and P any point in the plane,

%~ and if the radii from O,, O, to P are of lengths
», 7, and are inclined at angles 6;, 6, to the
Fig.I. axis of «, then a =logn»/r, and B = 6,—0,
T ~ The curves a = constant are a set of co-axial

circles having O,, O, for limiting points. ~The
circles corresponding to positive values of o lie
above the z-axis and those corresponding to negative values below, while the a-axis
itself, which is the common radical axis, is given by & = 0. The curves B = constant
are circles, or rather arcs of circles passing through O,, O, and cutting the first set of
circles orthogonally. On the right-hand side of the y-axis 8 is positive and on the
left-hand side negative, while on the y-axis 8 = 0, except on the segment O,0,,
where 8 = +x. At infinity « = 0, 8 = 0, and at O,, O, we have & = — o and + o
respectively. ‘ ' ‘
We have thus a set of co-ordinates adapted for the consideration of two-dimensional
problems in which the region considered is— ,
(1) A finite region bounded internally by a circle and externally by a larger and
non-concentric circle.
(2) A semi-infinite region bounded externally by a straight line and containing a
circular hole.
(3) An infinite region containing two circular holes of any radii and centre
distance.
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PLANE STRAIN IN BIPOLAR CO-ORDINATES. 269

If the displacements in the directions normal to the curves a and 8 constant are
u, v respectively. the strains are given by*

ou _ oh v ov oh
h % / " =>

Con = -V Cgg = N — —
da 0B’ PP B ca

Cop = —(,?— (hv) + 5 (}m)

and the corresponding components of stress by
(4)

;; = A (Cunt Cap) + 24 00, 1
BB = N (Cucteps) + 2utcpp, %

—_—~

Ot,@ = M€y, J

 These stresses may be derived from a stress-function, so that in rectangular
co-ordinates |

—~ _ e O —~ _ o
e WT Ty T e

Transforming these equations to curvilinear co-ordinates we obtain

—~ _ 3 90 [} )\ oh ox
. h8,3<h8,8/ }aaaa

9 (y ox oh ox
B'B—hﬁa(\ ooc> }8/88,8

—~ (k) o
f=—h 7 28 e )

~

—~
Ot

~—

We will usually find it convenient to deal with Ay instead of X itself, and in our
particular co—ordmates these equations become

~ N o2 ) . _a. N
oo = {(cosh a— cos 8) = Y — sinh o == 5~ —sin B 03 + cosh (x} (hx),
aég {(cosh a— cos ) =—; O _ inha-L — sin ,8 = + cosh ﬁ} (hx), & (6)
oo’ do ,8
anf = — (cosh a— cos B3) —8—01(%2([3—) .

We may note that

Cb(ofo\c—-,ﬁ-,\('?) (cosha——cos,@)(aﬁ aq: >(lzx) Coe e (7)

* LovVE, ‘ Theory of Elasticity,” p. 54.
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270 DR. G. B. JEFFERY ON PLANE STRESS AND

so that if hy and its second differential coefficients are finite at infinity (e = 0, 8 = 0)
we have there aaa = 088 = hx and aB = 0.
In the absence of body forces the stress-function satisfies V*y = 0. In curvilinear
co-ordinates we have
N2 92
V2=/2 ( 3
. (16)2

and, taking /hy as the dependent variable, we have in our co-ordinates

{ "\3 N2 )
aViy = {(cosh a— cos 3) (8 5+ Llé—> —2sinh o ¢ —2sin B ,3 + cosh a+ cos /8} (hx).
Repeating the operator, a little reduction leads us to the vfollowing transformation
for Vix = 0:
/ 84 ot 34— 82 +2 o?
R T

Thus by considering hy instead of xy we have a hnear equation with constant
coefficients.

Before proceeding to the discussion of its solutions, we must investigate the method
of determining the displacements corresponding to a given stress-function, in order
that we may ascertain whether and under what conditions these are single-valued.
This is particularly necessary in our case, as one of the co-ordinates, 8, is itself many-
valued.

Adding and subtracting the first two equations (4), and leaving the third as it
stands, substituting for the stresses in terms of the stress-function, and for the strains
in terms of the displacements, we obtain the following three equations :—

>(hx)=0.. N ()

%{%—2(“,‘)”%5@{% 2(x+#)%}=o, N ()]

a{hza—x+2,uhu} gaﬁ{hz%-}-Zukv}:O,. o .. (10)
0 [20x 0 J720x —

lh 8,8+Z Iw}+a/3{h aa+2#hu}— 0. . . . . . .(11)

From the last two of these it appears that we may define a new function P such that

aP g__X_ ).

™ =h 36 + 2uhw, .. . . . ... (12)

8P 2OX V

28 =h ~+ Quhw, . . . . . . . . . (13)
VP = 0,
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PLANE STRAIN IN BIPOLAR CO-ORDINATES. 271

and we have still to satisfy (9). Substituting for «, v in terms of P we have

/1P
h?* = ((a K/: o >

which may be re-arranged thus—

aP >\+2,U,Vz
8,8 hz oo = A u

P
Co | A+pm oo 1?08

A+2uox 1 OP} 0 {)\+2p. ox 1o

It follows that a function Q exists such that

pedQ 0P Ao ()
Coca oo At u a8

S P a2 iy
h[)’ a[3+>\+ulr‘a""""<15)

Eliminating P by differentiating with regard to 8 and a respectively, and adding.
we have

?}%/&Q)_( Fh_ A+2u [L 0 [0x) 1 o/ ).OAX\}
GudB  NPaoh 2 (\+p) U Oa V” o T 8[3 \* “ﬁ>

oot
which becomes in our co-ordinates

¢ (hQ) _ A2 [0 (hy) _ ¥ (k)
dadf  20twm) | dar 0P

—-hx}*.. ... .. (16)

There is, however, a further condition to be satistied by Q corresponding to the
condition V?P = 0. Differentiating (14) and (15) with regard to «, B respectively,
and subtracting we have »

9OQ ____Q(g@\' _ A 2u | 5< , OX o/ JQX>}
(;a(,\/ ooc) aﬁl B)_ A+ Iaa] /3) 813(;

or in our co-ordinates

Z0Q) - (hQ) Q= - 2OFZ)EUR) )

Atu  oadf

These two equations connecting Q and x are consistent, for, if we eliminate Q by
appropriate differential operators, we have

R R G Rl

which is readily seen to be identical with the condition Viy = 0, as given in (8). It
is obvious that AQ satisfies the same differential equation, and hence it also is a
solution of V*Q = 0.
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272 DR. G. B. JEFFERY ON PLANE STRESS AND

" 'We have therefore from (16)

1y . A+2u 82(]7,X)_82(/lvx)_~ 1
bVQ*Q(?\%—u)j‘H ™ A /z,deocd,B,. ... (18)

and from (12), (13) and (14), (15)

2’,,,:~L}2,§X~/_6_Q_ 19
it Atu Co '2/8 ’ (19)
S = ) X +/,5”9-. . (20
* Atu 08 ‘o ( )

It 1s readily seen that these equations determine « and © apart possibly from rigid
body displacements, for, although owing to the double integration an arbitrary
tunction of « and an arbitrary function of B will appear in 2Q, these will be
determined by (17), except for functions of « or 8, which make its left-hand side
vanish identically. The only possible arbitrary terms in AQ.are therefore given by
hQ = aA (cosh a+cos 8)+ B(cosh a—cos 8)+Ca sinh a+Da sin 8, or

Q = Ar*+uB+Cy+Dax

where » 1s the distance from the origin.  These give rise to terms in %, » corresponding
to motions of pure translation and rigid body rotation about the origin.

§3. THE STRESS-FUNCTION.

Turning now to the consideration of the possible forms for the stress-function in
these co-ordinates, we note that the differential equation (8) can readily be solved by
the ordinary method, and that its general solution 1s

hx = ¢y (a+1B)+e¢ "py (a+18) + "¢y (a —1B8) +ep, (2 —1).

If we seek a solution of the type hx = f(a) cos nB or f(a) sin nB, (8) shows that
the differential equation for f(«) is .

2
<d_do%‘ —2(n*+ 1)&%} +n'—2n’+ 1>f(a> =0

the solution of which is
S(a) = A, cosh (n+1) a+B, cosh (n—1) e+ C, sinh (n+ 1) e+ D, sinh (n—1) «,
unless # = 0 or 1. In the latter case we have

J(a) = A, cosh 2a+ B, +C, sinh Za+Da,
and when n = 0 ' :
S (a) = A, cosh a+ By cosh «+C, sinh &+ Dy sinh .
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PLANE STRAIN IN BIPOLAR CO-ORDINATES. 273

If we now seek solutions for which %y is a multiple of sinh ne or cosh na, we find
the following solutions which are not included above—

hx = (E cos B+F sin 8+ G cosh a+ H sinh &) 8.
Since any constant multiples of , ¥y and any constant may be added to X without
affecting the stresses, it follows from (2) that any multiples of '
sinh a, sin 8 or cosh a—cos 3
may be added to hy. This allows us to take the coefficients of cosh «, sinh o and sin 8
as zero. We have then the following general expression for hy :—
hx = (B cos 8+F sin B+ G cosh «+ H sinh «) 8
+ (BO cosh a+D, sinh a) «
+(A, cosh 20+ B, +C, sinh 20+ D,a) cos 8
+(A’; cosh 24 C/; sinh 22 +D',a) sin B
([A,cosh(n+1)a+B, cosh (n—1) a+C, sinh (n+1) « ]l
. § , +D, sinh (n—1) «] cos nB L
+[A’cosh (n+1)a+B, cosh(n 1)a+C,sinh(n+1)a |
4[ +D’, sinh (n—1) ] sin nﬁ.J
L (21)
We have now to determine whether the displacements corresponding to this stress-

function are single valued or not. The function (AQ) is easily obtained.by simple

integration from (16), and the arbitrary functions thus appearing can be determined
by the aid of (17). We have

;‘_:_; (PQ) = (E cos B+F sin 8+ G cosh o+ H sinh a) o
—(B, cosh 4D, sinh &) 8
—(A, sinh 20+ C, cosh 2 +D,8) sin 8
+(A’, sinh 20+, cosh 2a—D,B) cos 8
(A, sinh (n+1) a+ B/, sinh (n—1) a4+, cosh (n+1) & ]
+D’, cosh (n—1) a] cos nS8 |
2 | —[A,sinh (n+1)a+B,sinh (n—1) @+ C, cosh (n+1) r
+D, cosh (n—1) a] sin n. |
(22) |
It is clear, from the general expressions for Ay and AQ, that the only terms which
can possibly give rise to many-valued displacements are
lix = (E cos 8+F sin 8+ G cosh a+H sinh ) B

+(B, cosh &+ D, sinh a+D, cos 8+ D', sin B) a,
YOL. COXXI.—A. 2 Q

+

n

M8
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274 DR. G. B. JEFFERY ON PLANE STRESS AND

and the corresponding terms in AQ)

;+2ﬂhQ = (E cos B+ F sin ,8+-G cosh a+H sinh a) «
"
—(B, cosh a+D, sinh o.+ D, cos B+ D/, sin 8) 8.

From (19) and (20) we may now find the corresponding displacements u, v. Each
of these is found to contain a multiple of the many-valued co-ordinate 8. Equating
the coefficients of these terms to zero we have the following relations :—

E+G=O, B+D =O,
,+D, } (23)

,uF—-(K+2,u) D, =0, MH+(7\+2,U.) D/, =o.

We shall now show that these early terms correspond to the resultant of the forces
and couple applied over the boundaries. For this purpose we shall require the following
elementary forms of the stress-function :—

(1) For an isolated force X applied at the origin in the direction of ’the x-axis
x = —(27)* X (y—vx log )
where 7, 6 as usual denote polar co-ordinates and v = uf(\+2u).
(2) For an isolated force Y applied at the origin in the direction of the y-axis
x =(27)*Y (20 +vy log 7).
(8) For a point couple of moment L applied at the origin in a positive sense
- x = —(27)'Le.
(4) For a centre of pressure radiating uniformly from the origin
x =log,

Inserting the relations (23) necessary to ensure single-valued displacements our
early terms become

hx = G (cosh a—cos B) B+, (cosh a—cos 8) a
+F (B sin B+ve sinh o) +H (B sinh a—va sin B)

or

x = aGB+aBa+F (xB+wya)+H (yB—rvxa). . . . . . (24)

Now aGp = aG (6,—6,) and hence this term represents a couple of moment 27aG
applied at &« = o and an equal and opposite couple applied at @ = — . The term
e represents two equal and opposite centres of radial pressure at these same points.
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PLANE STRAIN IN BIPOLAR CO-ORDINATES. 275

‘We also have

H (yB—vea) = H {(y+a) 6,—vx log 7} —H{(y—a) 6,—vx log .}

—aH (6,+6,).
This corresponds to a force 2xH applied at o = + o parallel to the z-axis and an
equal and opposite force applied at o = —x 2man
(thus forming a couple of moment 47aH) and
point couples each of moment 2waH applied &‘ ® e
at these same points (see fig. 2).
Finally =0

e e e o e e o 2 0 T o

FaxB+wya) = F{xb, +v(y+a)logr}

—F {x0,+v (y—a) log r,}
—avF log 7y7,. ’ ' e av/‘:,o 2ol

This corresponds to forces each equal to 2=F, Fig.2.

acting at the points & = + o and each directed

towards the origin, together with two equal like centres of uniform pressure at the

same points. This brings to light a new solution corresponding to the last term.
Expressed in our co-ordinates we have

log 7, = 2 log (2a)—2 log (cosh a—cos B3),
and the corresponding form of Ay is, apart from constants,
hx = (cosh a—cos B) log (cosh a—cos B).

It is easily seen that this can be expanded in a Fourier series which is included in
our general expression for Ay, but that the expansion is different on opposite sides of
the line @ = 0. For this reason we shall find it convenient to include a term of this
form whenever the region under consideration includes parts above and below the
axis of «, 2.e., when 1t is bounded by two circles neither of which encloses the other.

It will be noted that, taken together, the early terms allow for the most general
resultant forces acting over the two circular boundaries enclosing the two points
a= + o, o = —o, subject to the condition that the forces acting over the two
boundaries considered together form a system in equilibrium. If it is desired to
investigate problems for which this condition is not satisfied we can readlly obtain the
necessary additional solutions. They will be

x = (y+a) 6w log 7,
x =x0,+v(y+a)logr, . . . . . . . . . (25

x =6,
2Q 2
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corresponding to forces and couple applied at « = — o, and similar terms in 6,, log 7,
corresponding to forces and couple applied at @« = + . The corresponding forms of
hx can be expanded in series which are included in our general form, but here again
the expansions are different on opposite sides of a = 0 and diverge for a =0, 3= 0
together, ¢.e., at infinity. This divergence corresponds to the obvious fact that forces
or couples must be applied at infinity to maintain equilibrium.

Owing to difficulties of this kind we shall find it convenient to insert the
appropriate terms corresponding to the resultant force and couple over a boundary
and to investigate the stress-function corresponding to the remaining applied forces
which will be in statical equilibrium for each boundary.

Let us write for brevity

¢, () = A, cosh (n+1) a+B,cosh (n—1) a+ C,sinh (n+1) a+D,sinh (n—1) & } (26)
“,

Y, (@) = A, cosh (n+1)a+B, cosh (n—1)a+C/, sinh (n+1)a+D,’ sinh (n—1)
if n=2 and .
¢, (2) = A, cosh 2a+B,+C, sinh Qa} (27)

Y (@) = A’ cosh 2a+C'; sinh 2a.

" Setting aside the terms corresponding to the resultant forces and couples over the
separate boundaries we have

hx = {By+K log (cosh a—cos 8)} (cosh a—cos 3)
+ %] {$,(a) cos nB+, (a)sinnB} . . . . . . . (28)

where the term in K may be omitted when the region considered lies entirely on one
side of the line '

§4. BounpaRY CONDITIONS.

Let us consider a plate bounded by two curves a = a,, a, We may suppose
a,> o, and o, > 0. Then, if ,>0 we have a finite plate bounded internally and
externally by circles which are not concentric, if a, <0 we have an infinite plate
containing two circular holes, and by suitably choosing the values of a, a,, &, we can
make the circular boundaries in either case of any desired radius and centre distance.
In particular if «, = 0, we have a semi-infinite plate bounded by a straight edge
and containing a circular hole. Suppose that such a plate is in equilibrium under
given normal and tangential forces applied over the boundaries a = a,, a,, so that we
are given over o = a, '

a;:E} =+ > (@, cos nB+b, sin nB),
1 (29)

ana = ¢+ = (¢, cos nB+d, sin np),
1
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while over a = a, we have similar expansions in which a,, a,, b,, ¢, ¢,, d, are replaced
by oo, &\, U,y oy &y A
If the tractions applied over the circle a = a, are statically equivalent to forces
X, Y at its centre, and a couple of moment L, then
X = f{oﬁ %@ _ a8 8?’} dg,
0 oot

Y= rﬂ{aa @—- /8 }d@

0

o’ j” oc,B dg

sinh o;Jo cosh a—cos B8’

~~~ —~~~
The coefficients of aa, B8 can readily be expanded in Fourier series. We have, in
fact, since a;, > 0,

ox sinh « sin 8

oo —a(cosh a—cos B)°

@
= —20 2 ne™" sin ng,
1

oy _ _ (coshacos B—1) _ _, & .
E (cosh a—cos B)* 20&? ne™™ 00 nf,

and
sinh &, (cosh a;—cos B)™ = 142 %ge“”“’ cos np.

Substituting these and the expansions for aa, aB in the expressions for X, Y, L, and
integrating, we have

X = 27r2n(a —d,) e,

1

Y= —-2r2n(b,+c,) e,
1
L = —2na cosech®a, = a,e~".
1

The corresponding components of the resultant of the forces applied over a = a,
can be obtained in a similar way. We must, however, remember that in this case
the forces act from that side of the boundary for which & <a, whereas in the case
of the first boundary they acted from the side for which « <a,. We obtain, if a,> 0,

X' =—2rZn(d,—d,)e™,

1

Y’ ——271'2%(5’ +c ) e

L/ = 27a cosech®, S L7,
1
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If «, < 0 there are some differences of sign owing to the different Fourier expansions
for the direction cosines. We have

X' = —2r Sn(d,+d,) e,
1

Y =—2+3n ¥',—c),) e,
1

[e )
L/ = —27a cosech’a, = o/ e™.
1

Hence, if the forces acting on each boundary are statically in equilibrium, we have

3 n(a,—d,) e = 0, S (b, +c,)e™ =0,
- : (30)
Za.em™ =0, Zdlet = 0.
1 1
with, if a, > 0,
Sn(d,~d,)e ™ =0, En(b,+c)e™=0 . . . . (31)
1 1
or, if a, <0, »
Ea(d,+d,) e =0, Enb,~d)e=0.. . . . . (32)
1 1

We will now show that it is possible to determine a stress-function of the form (28)
which gives the appropriate stresses over a = a,, a,, and which gives no stress at
infinity if the region considered extends so far.

By the aid of (6) we can calculate the stresses corresponding to the stress-function
(28). We obtain

2ama = K (1—2 cosh® @) —2B, sinh & cosh a+2¢, ()

+2 (K cosh a+B, sinh a) cos ,8——K‘ cos 28

([(7+1) (n+2) ¢y (#) =2 cosh & (n'—1) ¢, ()
. + (n—1)(n—2) ¢,_, (a)] cos n8
+ n?l 1 +[(n+1) (n+2) Yryr (@) =2 cosh a (BP—1) Vb, ()

" +(n=1) (1—2) Y1 (a)] sin 0
L —2sinh a[¢/, (@) cosnB+y/, (@) sinnB].

~

and
20&;,5 = /1 (a) =2 (K sinh &+ B, cosh ) sin B+ B, sin 23

{ [(n+1) W,y (@) =2 cosh any/, (a) + (n—1) W'a_; («)] cos 8, }

* E —[(n+1) ¢'n,: (@) ~2 cosh ang’, (a) + (n—1) ¢,_, (@)] sin ng.

n
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Identifying these with (29), we have the following relations from which to obtain
the coefficients :—
$1 (o) = 2¢,+ 2B, sinh a, cos a,+ 2K cosh® a,— K
1.2.8.¢, () = 2¢,—2 (K cosh a,+ B, sinh a,) +2 sinh a, ¢/, ()
2.8.4.¢; () —2 cosh a, . 1.2.8.¢, () = 4c,+2K +4 sinh o, ¢/5 () :  (33)
(n+1) (n+2) gy (@) —2cosh o, (n—1) (n) (n+ 1) g, (o) + (n—2) (n—1) (n) $1 (1)
= 2nc,+2n sinh o, ¢, (&) (nZ3) )

n(n+1) (”H” 2) ‘Pn;l (1) —2 cosh a, (n—1) ("") (n+1) Y, (21) +(n"'2) (n—1) (n) Var (1)
= 2nd,+2n sinh a, ¥/, (o) n=1)

(34)
(35)

¥y () = 24,
(n+1) Wi (o) =2 cosh oy i/, () + (n—1) ¥,y (o)) = 20, (nZ=1)

24", () —2 cosh a, ¢/, (@) = —2b,—2 (K sinh «,+ B, cosh )
3¢’y (1) —4 cosh a; ¢5 (o)) + 91 ;) = —2D,+B, . (36)

(n+1) ¢, () =2 cosh a, ng', (@) + (n—1) ¢/, 1 () = —2b, (= 3)

Writing out equations (35), multiplying by e~ and adding, we have

(n+1) Woga (o) e —mp, (o) €7 e = 2 ;: Qe
. p=0
or
(m4+ 1) o (o) =, (o) €7 = 2™ EO ae™ . . . (37)
»=

Now, in virtue of (30), we may write the right-hand side of this

—2e™ § O™ = —2 % Opyr "

p=n+l r=1

and since Sa, cos n8 is supposed convergent this tends to zero as n increases. Hence

from (37) we see that the limit of v/,,, (a,)/y/s(a;) as n increases is e~*, and hence

the functions v/, («,) are finite for all values of » and tend to zero as n increases, if
the resultant couple acting on o = &, vanishes.
Multiplying (87) by e* and adding, we have

n-1 n~1

n—1 q
e, () e Ve =23 X et Pn=23 3 aePn,
q:OP:Q . p:ﬁ q=p
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which, on effecting the summation with regard to ¢, leads at once to

n, (a;) = 2 cosech alp? apsinh (n—p)e, . . . . . . (38)
for n= 1. ‘

Treating (34) in a similar way we have
7 (n+1) (n4+2) Yrus (@) = (n=1) (n) (n+1) P, () 7
= 2@"“‘ 2 ]o[ol +sinh apy/, (a)]e ™. . . (89)
We can readlly show from (85) that

sinh a, ) pe Y, (a]) = 4n (n+1) {/, (o) ==y, () } e — ) Pae T,
p=1 p=1 ;

and hence (39) may be written

n(n+1) (04+2) Vs (a2) = (n—1) (n) (n-+1) ‘/’n () e =n (n+1) [ (o) + ey, (001)]
+2¢r 2 P (dy—a,) e,
Aé in the case of y/,(a,;), we can show that the right-hand side tends to zero as n

increases if' conditions (30) are fulfilled. Hence y, () is finite for all values of 7 and
tends to zero as m increases, and we have

(n—=1) (n) (n+1) Y () % = 23 3 p (d,—a,) e

g=1lp=1

n—1 .
+ 2 (g1 e o () —em ¥ ()],
which, on reduction, leads to '

n(n*=1)y, (o) = 2 cosech o, "zl{(n —p)a,cosh (n—p)a,
p=0

+(pd,—a, coth ;) sinh (n—p) &} . . (40)

for n = 2. Equatlons (34) do not determine v, ().
From (36) we have

¢'s (o)) 67— ¢y () €72 = ¢/; (@) —2¢~ (K sinh a,+ B, cosh al)‘-— 2ble"°;‘, . (41)

and if n=2
(n+1) ¢/ ()™ —ng, (o) 6= "0 = ¢, () —2Ke™ sinh o, — B,
—2 Zber ., . . . . (42)
p=1 )

and hence, if the sequence ¢, (a,) is to converge for large values of 7, we must have

¢'1 () = By+2Ke ™ sinh o, + 2~pélbpe“f’“‘, Coe e (48)
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PLANE STRAIN IN BIPOLAR CO-ORDINATES. 281
From (41) and (42) we have, if n= 2,

n—1 N
ng’, (o) eV = ¢; (o)) —By+ qzll (¢'1 (2;)—2Ke sinh a;—B,) %

n—1 q
—2 2 X bl

¢g=1p=1
from which we obtain

n sinh a; ¢/, () = (¢/y (;)—B;) sinh na;—2K sinh (n—1) a, sinh «,

n—1
—23 b,sinh(n—p)e, . . . . . . . . . (44)
D=1

for n = 2, while ¢/, (o) is given by (43).
Finally we have from (33), omitting the first equation of the series, if n = 2,

n(n+1) (n+2) e, () —(n—1) (n) (n+1) e=*Voigs ()
' = -2 (B,+K)e ™ sinh o,
+2 3 p (c,+sinh a, ¢, (;)) e77.
p=1

By the aid of (86) we can reduce the right-hand side to

7 (1) (i (o)== () 7742 2 p (e 4,) e,

from which it appears that ¢,,, (,) is finite and tends to zero as n increases, provided
that the resultant of the applied forces over a = o, is zero. We then obtain for
n=2,
n(n’—1) sinh o, ¢, (a;) = (¢; (;)—B,) {n cosh na,—coth a, sinh na,}
—K {(n—1) sinh ne,—(n+1) sinh (n—2) a,}
+2:§1 {(pc,+b, coth ;) sinh (n—p) «,

—(n—p) b, cosh (n—p) oy}, . . . . (45)

2¢, () = 2¢,+ B, sinh 20, +K (2 cosh?a—1). . . . . . (46)

while

It appears that equations (88), (40), (48), (44), (45) and (46) give the values of
b (1), Yo (1), ¢y (1), ¥, () for n = 1 in terms of B,, K and the given coefficients
a,, &c., with the exception of -, (a,).

‘Now we have only assumed a, > 0 in order to establish the convergence of these
functions, and hence the corresponding functions of «, will be given by the same
formulee with o’,, V', ¢,, &, substituted for a,, b,, c,, d,, provided that the conditions
for convergence are satisfied. It may be shown that the new conditions of con-
vergence are identical with (80) and (81), or (30) and (32), according as &, > or < 0,

YOL, CCXXI.—/A, 2R
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The formula for ¢, (,) given in (43), which is itself a condition of convergence, will,
however, be replaced by

¢ () = By+2Kew sinh a,+2 S W™, . . . . . . . (47)
if oy < 0, "

From (26) we see that the coefficients A,, B,, C,, D, for n = 2 are determined from
b (1), ¢u (), ¢ (@), ¢'n(a), and similarly A’,, B, €', D/, are determined from
Vra (02), Yo (), a (), \l’, (),

The values of ¢1(a1) p1(a), ¢'1(a)), ¢'1(as) will give four equations to determine the
three constants A,, B,, C,, and the condition that they shall be consistent gives one
relation between B, and K. The values of ¥/, («,), ¥/, (a,) determine the two constants
Ay, ¢, and Vri(a,), Y. (as) are not otherwise determined.

We have thus just sufficient equations to determine the coefficients in (28) with
the exception of B,, K, between which we have found one relation. If a,>>0, so that
the region considered lies entirely on one side of the axis & = 0, we may take K = 0,
If on the other hand «,<<0 the condition that the stress shall vanish at infinity, which
is hx >0 when a, 30, gives one more relation between the coefficients, so that in
either case B,, K are determined.

We may therefore adopt the following method :—Insert terms of the type (24) or
(25) corresponding to the resultant force and couple on each boundary, and calculate
the residual stresses over the boundaries. These will now form systems in statical
equilibrium over each boundary, and we have shown how to determine an appropriate
function of the form (28).

The problem of finding the appropriate stress-function for given tractions over the
boundaries might have been approached by investigating the values of Ay and its
normal gradient on the boundaries, on the lines developed by MicHELL.* The direct
method which we have adopted is, however, in most cases simpler in our particular
co-ordinates.

There is an exception to this rule, namely, when a boundary is free from stress. In
this case the boundary conditions assume a very simple form. From (6) we have

é%(kx):const:p,sa,y. N 1))
and

(cosh a—cos ,8) (hx) —sin B= (hx)+cosh a(hx) = p sinh &

0B o8
the solution of which is readily found to give
Ix = p tanh a+o (cosh @ cos B—1)+7sin B8 . . . . . (49)

on the boundary considered.

* ¢Proc, London Mathematical Society,’ vol. xxi,, 1900, p. 100,
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The relations (48) and (49) are the necessary and sufficient conditions that a
boundary « = constant should be free from stress. The constants p, o, T are
MicHELL'S three constants of the boundary.

§ 5. A CYrLINDER OrR P1pE WITH ECCENTRIC BORE.

In this section we will consider the problem of a cylinder, whose cross-section is
bounded by two non-concentric circles, which is subject to a uniform normal pressure
over its internal surface and a different uniform normal pressure over its external
surface. By FiLon’s theorem of generalised plane stress precisely the same analysis
will give the average stresses in a plate of the same section under the same applied
forces. ‘ , ,

Let the boundaries of the cross-section be defined by a = «, for the internal
boundary and o = a, for the external boundary. Then a,, a, are positive and a,>a,.

Let the applied pressures be P, P, respectively, so that o = ~P,ona=a, wa = -P,

on a = a, and &8 = 0 on both boundaries.
Let us assume

hx = Bya (cosh a—cos 8)+ (A, cosh 2a+ B, +C, sinh 22) cos 8.

Calculating aAa, /B,ZB, by means of (6) and applying the boundary conditions, we find
the following values for the constants :—

B, = 2a M (P,—P,) cosh (a;—a,)

A, =—aM (P,—P,) sinh (a;+a,)

C, = aM (P,—P,) cosh (a,+a,)

B, = aM {P, cosh (a,—a,) sinh 2a,— P, cosh (e, —a,) sinh 2e, + (P, +P,) sinh (e, —a;)}
where, for brevity, we have written

| M = 1 cosech (a;—a,) {sinh?%x, +sinh%,} ‘

The most important aspect of the problem is the value of the stress ,(/B,E in the boundaries,
for it is upon this that the strength of the cylinder will depend. This is most readily
determined by (7), and we find without difficulty .

o —EEE = 4M (P,—P,) (cosh a—cos ) {sinh (&, +a;—2a) cos B—sinh « cosh (a;— )}
so that on a = a, ‘
',/8-,23 =—P,+4 (P,—P,) M (cosh &, —cos 8){sinh (&, —a,) cos B+sinh a, cosh (o, —a5)} (50)
and on a = a,

78-,2-3 =—P,—4 (P,—P,) M (cosh a,—cos 8){sinh (&, —a,) cos 8—sinh a, cosh (&, —a,)} (51)
2R 2
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In order to investigate these results further we will consider separately the cases
when the cylinder is subject to esther internal or external pressures. There is no
greater difficulty in the consideration of the general case, should the necessity arise,
except that the formule are correspondingly longer.

A Cylinder wzder Internal Pressure.

If we put P, = 0, we have on the external surface
,é,NB =—4P, M (cosh a,—cos B8){sinh (a,—a,) cos 8—sinh a, cosh (a;—a,)},

if d,, d, denote the distances of the circles a,, o, from the origin, ,, 7, their radii and
d the distance apart of their centres, so that d = d,—d, we may show from (2) that

d,=a coth a, d; = a coth a,
7, = & cosech a,, 7y, = o cosech o,
and
d, = (rf—r?—d?)[2d, d, = (ri—r2+d?)[2d

of = {r@—(r+d)} {r’—(r—d)}[4d".
By means of these relations we can reduce the expression for EB to the form

IgB _ 2P {r’ (r;—2d cos 6)2—(7'12—d2)2},
‘ B ("'12+"'22){"'22—(7'1+d)2} {rf—(r—d)’}

From this and the obvious inequality d <r,—r, we easily see that—
(1) The numerically greatest stress is when 8 = =, .e., on the line of centres at the
thinnest part of the cylinder. This is always a tension if P, is positive and is

given by
2P17‘12 (7"22 + 7‘12 + 27’2(1 - d2) s (52)
(7‘12 + ”'22) (7'22 - 7'12— 2?"2d + d2) oo

(2) If the centre distance is greater than half the external radius there is minimum
stress at the points corresponding to cos 8 = ryf2d. This is always negative
when P, is positive and we have maximum compressions equal to

: o2P.r? (r2—d°)
I s P} ri—rmapy o 9

This is always numerically less than the maximum tension. There is a
secondary maximum at 8 = 0, i.e., on the line of centres at the thickest part of
the cylinder, which is equal to

2P, (rf+r’=2rd=d’) ()
(rZ 477 (ri =+ 2rd + d°)
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(8) If the centre distance is less than half the external radius, we have, in addition
to the maximum tension (52), a minimum at 8 = 0 given by (54). There are
no other maxima or minima and the stress decreases steadily from its value at
the thinnest part of the cylinder to its value at the thickest part.

On the internal surface we have
EB =—P,+4P M (cosh a,—cos B) {sinh (o;—a,) cos B-+sinh &, cosh (a,—a,)},
or, expressed in terms of the radii and centre distance,

2P 2 {(r—d?f’ —r? (r,+2d cos B)*} (55)

BB = -P+ (7-12+7'22) {7,22_(,’.1_002} {/y-22._(7"1+0l)2}.

Hence it may be shown that

(1) If the centre distance is greater than one-half the internal radius the maximum
stress in the internal surface occurs at the points correspondmg to

cos B = —r,/2d and is P (ri—)
2P r? (rf—d?)?
(7'1 +7, ){,,-2 __(,rl_d)2} {q,.2 '—("'1+d)2} e e e e (56)

(2) If the centre distance is less than one-half the internal radius the maximum
stress is at B8 = =, 1.e., on the line of centres at the thinnest part of the cylinder.
It is

2P17'22 (7'22 + 7‘12 - 2’7‘1d - d2)
(re+r?) (ri—r2—2rd—d?)

P+ (57)

(8) The minimum stress is at 8 = 0, the point where the line of centres meets the
internal boundary at the thickest part of the cylinder. It is

2P1’7'22 (7'22 + 7'12 + 27‘1d - d2) - ’ (58)
(7‘12+,r22) (7‘22'_7‘12'1" 2lrld'_d2). ’ ' ) ) ) ) )

_P]_|_

This may be shown to be essentially positive if P is positive so that, as would be
expected, the internal boundary is everywhere in a state of tension.

A Cylinder under Eaternal Pressure.

Putting P, = 0 in (50) and (51) we have on the internal surface

éE =—4P,M (cosh o, —cos 8) {sinh (al—éz) cos B+sinh a; cosh (o, —a,)}
_ 2Pg {(r—dP)?—r? (r,+ 2d cos B)’} S .‘ . (59)
(r2+rd) {r2—(r—d)?} {ri—(r+d)*}
and on the external surface ‘
,1;’-,(; = —P,+4P,M (cosh a,—cos B) {sinh (&, —a,) cos B—sinh a, cosh (@, —a,)}

2P, {7, (ry—2d cos B)?—(r*—d?)*}
(i) (re—m—dy) im(rrayy © = - 0 0 (€0)

=—P,—
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Hence if the centre distance is less than half the internal radius the compression in
the inner surface decreases steadily from a maximum at the thinnest part of the
cylinder to a minimum at the thickest part; otherwise there is a minimum at each of
the points and maxima at the points corresponding to cos 8 = —/2d. Similarly if the
centre distance is less than half the external radius the compression in the outer
surface decreases steadily from a maximum at the thinnest part of the cylinder to a
minimum at the thickest part; if the centre distance exceeds this value the
compression 1s a maximum at each of these points and minima at the points corre-
sponding to cos B = 7,/2d.

If in these results we put d = 0, we have, for a concentric tube under internal
pressure, tensions at the inner and outer surfaces which are respectively

2 2 2
rye+r 27
2 ! Pla ! P17

7l —? Pt —r?

while for a tube under external pressure the compressions at the inner and outer
surfaces are respectively ’
20y’ P P41t

25
’}"22 - 7'12 7122 - 7’12

P

These are the well-known formulse for thick tubes.

§6. A SEMI-INFINITE PrATE WITH A CIRcULAR Hore SussEcr To A UNIFORM
NorMAL PRESSURE.

If in the results of the last section we put ¢, = 0 and P, = 0, we have the solution
for a semi-infinite plate containing a circular hole, which is subject to a uniform
normal pressure, and bounded by a straight edge which is free from stress.

We have on the boundary of the hole

EB = —P,+2P, cosech? &, (cosh? a,— cos? B)
and on the straight edge ’
,é‘,l; = —2P, cosech? a, (1— cos ) cos 3.

If » is the radius of the hole, d the perpendicular distance of its centre from the
straight edge, and x the distance measured along the straight edge from the foot of
the perpendicular,

d = a coth e, r = a cosech a,, d?—r? = a?;

and
x = asin Bf(1— cos B).

We have therefore on the straight edge

—~ 2 (2 — o2 2 '
ﬁﬁ=—4Plféf—+d—2———_j;;2). N (3Y
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This has a maximum tension at the symmetrical point (x = 0) of magnitude
AP dP—r®). . . . . .. ... (62)

At the points = = +,/(d?—7?) it vanishes, and then becomes a compression which
reaches a maximum value at points at distances +./3 (d*—7*) on either side of the
foot of the perpendicular from the centre of the
hole, which is numerically equal to one-eighth of
maximum tension.

The stress round the circular hole may be

- represented by a simple geometrical construction.
If in fig. 8 the centre of the circular hole is C, Q
is any point on the circle, and CA the perpen-
dicular drawn from C to the straight edge, and 1if
Q denote the angle QAC, we easily see that

%
tan ¢ = sin B cosech a,, SN
A
and the stress round the circular hole is
B8=P (1+2tan’¢).. . . . (63) Fig.3.

Hence the stress is the same at points Q, Q' which lie on the same ray through A.
The stress is minimum at the points nearest to and most remote from the straight
edge, where 1t is a tension P numerically equal to the applied pressure. Thus at
these points the stress is the same as it would be in the absence of the straight
boundary if the plate were infinite. The maximum stresses are at the points of
contact of the tangents drawn from A the circular boundary. At these points its
value is s

Pl%........;...(m)
" The maximum tension in the circular boundary is equal to the maximum tension in
the straight edge if d = /3. In this case each is equal to 2P,. If the distance of
the hole from the straight edge is greater than this value the maximum tension is at.
a point on the circular boundary ; and if it is less, the maximum stress tension is at
the symmetrical point on the straight edge. On the other hand, the point of
maximum difference of principal stresses is on the straight edge or the ecircular
boundary, according as d is greater or less than ,/2r. This suggests a simple
method of determining whether, for a particular material, rupture occurs at the point
of greatest tension or at the point of greatest stress-difference. If a circular hole is
bored near the straight edge of a uniform plate, so that the distance of its centre
from the edge is greater than ,/2 and less than /3 of the radius, and a uniform
radial pressure is exerted over the hole in any convenient way and increased until
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rupture occurs, the crack will begin on the straight edge according to the greatest
tension theory, and on the edge of the hole if the greatest stress-difference theory
holds.

It will be noted that the stresses produced will become large if' the hole is near to
the straight edge. The formule are so simple that it is hardly worth tabulating
their numerical values, but a single example will serve as an illustration. If the
shortest distance from the hole to the straight edge is one-tenth of the radius of the
hole, the maximum tension in the straight edge is 19°5 times the pressure in the

hole.

§7. A SemI-INFINITE PLATE CoNTAINING AN UNSTRESSED CIRCULAR HoOLE AND
Uxper A UnirorM TENSION PARALLEL TO ITS STRAIGHT EDGE.

Let the circular boundary be defined by a = a,, so that if » is its radius and d the
distance of its centre from the straight edge, '

r = a cosech a,, d = a coth a,, dfr = cosh a,.

At a distance from the hole the stress-function may be taken as x = 3Ty* where
T is the tension, so that, if &« > 0,

hx, = T sinh?af(cosh a—cos B)

= 4aT sinh a <1 +2 ile”"“ Cos n,8> R (1))
We have to add to this a stress-function which gives no stress at infinity and no
stress over @ = 0, and is such that the complete stress-function gives no stress over
o = a,. : ,
We may omit the term in K in (28), since in this case the region considered lies
entirely on one side of @ = 0, and clearly the required stress-function is even in @.

Tt may readily be seen that the condition that e and ;c.,é shall vanish over a = 0 is
satisfied by (28) if ¢,(0) = 0 and ¢/,(0) = 0 for n = 1, and hence from (26) and (27)
A,+B,=0and (n+1)C,+ (n+1)D, = 0. We may therefore take for our complete
stress-function

hx = oT [% sinh & {1 +2 3 e cos n,B}+B0a (cosh a—cos B)+ A, (cosh 2a—1) cos B

. {An [cos;=(n+ 1) e—cosh (n—1) a] ) B] (56)
+ B, [(n—1)sinh (n+1) e—(n+1) sinh (n—1) a]f .

/]

-+

n=2

At infinity & = 0, 8 = 0 the first series diverges, but may of course be replaced by
the alternative form in (65). If the second series converges it is clear that at infinity

X = Xor
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We must now choose the coefficients in (66) so as to satisfy (48) and (49), and
there is no difficulty in finding the following values for the coefficients :— -

A, = te~"gech 2a,, B,=sech 2. . . . . . . . (67)

n? sinh®a, —n sinh «, cosh o, +e ™ ginh na,
A, =- sin- S o+ N (1)
2 {sinh*na,—n? sinh’a, }

E - n Sinh%cl
" 2 {sinh’na, —n? sinh®x,}

Substituting in (66) we have for the complete stress-function,

hx = oT| a sech 2a, (cosh a—cos 8) +% sinh a +sech 2, cosh (2, —a) sinh « cos 8

(69)

{n sinh o, sinh (@ —a,) sinh na }
L% —sinh a sinh n (¢ —a,) sinh na,) cos nB
. n=2 sinh®na, —n? sinh®a,

We may now calculate the stress ,é,?% in the boundaries by means of (6). We find,
on the circular boundary o = a,,

,é?él = 2T (cosh a,—cos B) {sinh o, sech 2a, + o M, cos n,B} R ()
n=2 .

where

M = n(n—1) sinh (n+1) &,—n (n+1) sinh (n—1) (71)
" 2 {sinh*na, —n? sinh’a, } I

The stress in the straight boundary cannot be directly determined from (69), for it
is found that the resulting series diverges for « = 0. We can, however, find without
difficulty from (66) that when a = 0,

,23",50 = T{1+(1-—cos ,8)% P, cos 'n,B} N 6]
1

where P, = 4nA,,. '

The series in (70) converges only slowly, unless a, is large, and for convenience in

computation we may transform it by separating the more slowly converging part.
Let

M, = 2n(nsinh ,—cosh a;) e™+N,, . . . . . . (73)
and we readily obtain .
2 sinh?® o, sin’ B ’
(cosh a,—cos B)?

 2(cosh a,—cos B) = n (n sinh a,— cosh a,) e cos nB = 1—
n=1
Substituting in (70) we have

EB _ 2T{1 2 sinh® o, sin",B?r
| =

" (cosh &, —cos B)

+2T (cosh &, —cos B) {sinh o, sech 2a; 4 2¢24 cos B+ > N, cos n,B} . (74)
n=2

VOL. COXXI.—A. 2s
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If 6 is the angle between the radius to the point «;, 8 and the perpendicular to the

straight edge, then
. sinh a, sin B

s 6 = cosh o, —cos 8’
and if «, is large (74) reduces to 6,81 = T (1+2 cos 20), which agrees with the known
result for a hole in an infinite plate and gives compression numerically equal to T at
the extremities of the diameter parallel to the tension, and tensions equal to 8T at
the extremities of the perpendicular diameter.

The numerical values of the coefficients P,, N, are given in Tables I. and IL
respectively. It will be noted from Table I. (that, as a, increases, P, tends to become

TasLe L
®. 0+6. 0-8. 1-0. 1-2. 1-4. 1-6. 1-8. 2-0. 2°2. 2-4.
P, | 0-3327 | 01567 | 0-0719 | 0-0327 | 0-0147 | 0:0066 | 0°0030 | 00013 | 0-0006 | 0-0003
-P; | 8-5861 | 2:0401 | 1-2545 | 0-7987 | 0-5180 | 0-3400 | 0-2247 | 0-1493 | 0:0994 | 0-0664
—P; | 2°2393 | 1:0622 | 05110 | 02448 | 0-1160 | 0-0543 | 00251 | 0-0115 | 0-0053 | 0:0024
~-Py | 1-3557 | 0°4874 | 0-1699 | 0-0570 | 0:0185 | 0-0059 | 0:0018 | 0-0006 | 0:0002 | 0-0001
—-P; | 0-7602 | 0-1970 | 0°0474 | 0-0108 | 0-0024 | 0-0005 | 0-0001
~Ps | 0°3964 | 0:0713 | 0-0116 | 0:0018 | 0-0003
-Py | 0:1934 | 0-0237 | 00026 | 0-0003
~Pg | 0°0891 | 0-0073 | 3:0005
-Py | 0°0391 | 0-0022 | 0-0001
~Pyo| 00165 | 0-0005
~Py; | 0°0067 | 0°0002
'mPlz 0:0027
- P3| 0:0010
—P14 00004
-P15 0-0001
~ Py | 0:0001
TasrLe II.
. | 06 | 08 | 1:0. | 12 | 14 | I'6 | I'8 | 20 | 22 | 24
Ny | 1°4649 | 0-7716 | 0-4139 | 0-2240 | 0-1219 | 0:0665 | 00364 | 0°0199 | 0-0109 | 0-0060
Ny | 0°7457 | 02647 | 00914 | 0-0306 | 0-0100 | 00032 | 0-0010 | 0-0003 | 0-0001
N, | 0-3238 | 00719 | 0:0148 | 0:0029 | 0:0005 | 0:0001
Ns | 0-1232 | 0:0162 | 0°0019 | 0-0002
Ng | 0:0421 | 0-0032 | 0-0002
Ny, | 0-0131 | 0-0005
Ng | 0-0038 | 0:0001
Ny | 0-0010
Nm 0°+0003

Nn 0-0001
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large compared to the other coefficients. Hence, when the hole is at a considerable
distance from the straight edge, the stress in the straight edge approximates to

T {1—C cos 28 (1—cos B)}

where C s a small positive constant.

This shows that the stress in the straight edge is a minimum at the mid-point,
increases to & maximum as we move outwards, then diminishes to a second minimum,
and finally increases steadily to the value T at infinity, where 8 = 0.

In fig. 4 we have plotted the graphs of the stresses in the boundaries for a case in

-
-

Stress in multiples of T.

] 1 i L L
o° 20° +Q° 80° 80° 100° 120° 140° 180° t80°

wewaeee Stress in straight edge.  ------ Stress in circular boundary.

Fig. 4.

which the hole is fairly near to the straight edge, «, = 0'8, for which the shortest dis-
tance between the two boundaries is approximately one-third of the radius of the circle.
It will be noted that the general character of the stresses is not affected by the proximity
of the straight edge. It will be remembered that when the hole is at a great distance
from the straight edge there are maximum stresses of 3T at the extremities of the

-diameter perpendicular to the straight edge, with points of maximum compression

numerically equal to T lying between. For a; = 0'8 we find that the maxima occur

at the same places but are increased, the increase being more marked at the point

nearest to the straight edge, where the tension is 4'366T, while its value at the point

most remote from the straight edge is 3'266T. The stress in the straight edge also

maintains the same general character as it exhibits when the hole is at a great distance
28 2
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from the straight edge. Here again, however, the maxima and minima are
accentuated. The minimum at the central point has decreased and has become a
compression numerically equal to 1°956T.

It appears that for the range of values which we have investigated the maximum
stress 1s on the circular boundary at the point of nearest approach to the straight edge.
Its value for different values of the ratio of the distance of the centre of the hole from
the straight edge to the radius of the hole, together with the stresses at the centre of
the straight edge and at the most remote point of the circular boundary, is shown in

Table I11.
Tasre II1.

k, Ratio of distance

! Stress at mid-point | Spgess at nearest Stress at most
ay. of centre from edge £ straioht cdee point of circular remote point of
to radius of hole. o sralght edge. boundary. circnlar houndary.
06 1-185 —4-080T 5:064T 3-362T
0-8 1-337 —-1-956 4366 3266
1-0 1-543 -0-89 3:919 3-201
1-2 1-811 -0-269 3:609 3-152
1-4 2-151 +0-134 3-396 3-115
16 2:577 0-405 3254 3-087
1-8 3-107 0-591 3-162 3:065
2:0 3-762 0-721 3:103 3-048
2:2 4-568 0-810 3:065 3:035
2-4 5557 0-871 3:043 3:025
oo o 1-000 3:000 3-000

It will be noted that when the hole is very near to the straight edge, so that the
two boundaries are separated only by a narrow connecting piece, the stress in this
plece consists of a very large tension on the inside and a numerically slightly less com-
pression on the outside. Hence, as might be expected from general considerations,
the stress in this narrow connecting plece is a bending moment accompaniéd by a
certain amount of tension.

These results may be compared with some experimental results recently obtained by
Prof. Coxer and Messrs. K. C. CHAKKO and Y. SATARE® by optical means. These
deal with the stresses in a strip of finite width under tension with a circular hole
centrally placed, whereas we have considered the case of a semi-infinite plate with a
circular hole near its straight edge. The problems are therefore not quite comparable ;
but as in each case the critical region will clearly be near the minimum section between
the hole and a straight boundary, the two problems may be expected to exhibit the
same general characteristics,.  For the strip of finite width it 1s found that there is
maximum stress in the circular boundary at the points of nearest approach to the

* ¢« Transactions of the Institution of Engineers and Shipbuilders in Scotland,’ vol. Ixiii., Pars I., p. 33,
1919.
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straight edges and minimum stress at the points of the straight edge immediately
opposite the centre of the hole. Moreover as the radius of the hole is increased in
proportion to the distance of its centre from the edges of the strip these maxima and
minima become more pronounced. In all the cases examined experimentally the
minimum stress in the straight edge remains a tension, but Prof. CoKER surmises that
if the radius of the hole were still further increased in proportion to the width of the
strip this minimum stress would become a compression. All these results agree
qualitatively with the theoretical results established in this paper for the semi-infinite.
plate, and allowing for the difference in the two problems they may be taken as a
substantial experimental verification.
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